回答:這個(gè)就不用想了,自己配置開發(fā)平臺(tái)費(fèi)用太高,而且產(chǎn)生的效果還不一定好。根據(jù)我這邊的開發(fā)經(jīng)驗(yàn),你可以借助網(wǎng)上很多免費(fèi)提供的云平臺(tái)使用。1.Floyd,這個(gè)平臺(tái)提供了目前市面上比較主流框架各個(gè)版本的開發(fā)環(huán)境,最重要的一點(diǎn)就是,這個(gè)平臺(tái)上還有一些常用的數(shù)據(jù)集。有的數(shù)據(jù)集是系統(tǒng)提供的,有的則是其它用戶提供的。2.Paas,這個(gè)云平臺(tái)最早的版本是免費(fèi)試用半年,之后開始收費(fèi),現(xiàn)在最新版是免費(fèi)的,當(dāng)然免費(fèi)也是有限...
回答:這個(gè)問題,對(duì)許多做AI的人來(lái)說,應(yīng)該很重要。因?yàn)?,顯卡這么貴,都自購(gòu),顯然不可能。但是,回答量好少。而且最好的回答,竟然是講amazon aws的,這對(duì)國(guó)內(nèi)用戶,有多大意義呢?我來(lái)接地氣的回答吧。簡(jiǎn)單一句話:我們有萬(wàn)能的淘寶??!說到GPU租用的選擇。ucloud、ucloud、ucloud、滴滴等,大公司云平臺(tái),高大上。但是,第一,非常昂貴。很多不提供按小時(shí)租用,動(dòng)不動(dòng)就是包月。幾千大洋撒出去,還...
回答:私有云協(xié)同方案:在公司內(nèi)部搭建私有云存儲(chǔ)系統(tǒng),整個(gè)公司通過訪問私有云進(jìn)行協(xié)同工作。比較常見的私有云協(xié)同方案有私有云企業(yè)網(wǎng)盤解決方案,該方案通過將企業(yè)非結(jié)構(gòu)化數(shù)據(jù)(文檔)集中存儲(chǔ)在私有云上,通過授權(quán)訪問的方式實(shí)現(xiàn)全員的文檔協(xié)作。選擇私有云還是公有云?企業(yè)網(wǎng)盤不管是公有云還是私有云,功能是相似的。公有云比較便捷,不需要服務(wù)器的搭建和維護(hù),按期付費(fèi),長(zhǎng)期算成本較高。私有云比較安全,數(shù)據(jù)存儲(chǔ)在自己的服務(wù)器...
回答:用CUDA的話可以參考《CUDA by example. An introduction to general-purpose GPU programming》用MPI的話可以參考《高性能計(jì)算之并行編程技術(shù)---MPI程序設(shè)計(jì)》優(yōu)就業(yè)小編目前只整理出了以下參考書,希望對(duì)你有幫助。
... 160GB 主機(jī)內(nèi)存,以及共計(jì) 32GB 的 GPU顯存、總計(jì)提供8192個(gè)并行處理核心、最高15 TFLOPS的單精度浮點(diǎn)運(yùn)算處理能力和最高1 TFLOPS的雙精度峰值浮點(diǎn)處理性能。 GN4實(shí)例計(jì)算性能力GN4實(shí)例最多可提供 2 個(gè) NVIDIA M40 GPU、56 個(gè) vCPU 和 96GB 主...
... 160GB 主機(jī)內(nèi)存,以及共計(jì) 32GB 的 GPU顯存、總計(jì)提供8192個(gè)并行處理核心、最高15 TFLOPS的單精度浮點(diǎn)運(yùn)算處理能力和最高1 TFLOPS的雙精度峰值浮點(diǎn)處理性能。 GN4實(shí)例計(jì)算性能力 GN4實(shí)例最多可提供 2 個(gè) NVIDIA M40 GPU、56 個(gè) vCPU 和 96GB ...
...的首選,這其中的主要原因,一方面,GPU完善的生態(tài),高并行度的計(jì)算力,很好地幫助客戶完成了方案的實(shí)現(xiàn)和部署上線;另外一方面,人工智能發(fā)展,仍處于早期階段,各個(gè)行業(yè)都在從算法層面嘗試尋找商業(yè)落地的可能性,是...
...長(zhǎng)處理大規(guī)模并發(fā)計(jì)算的算術(shù)運(yùn)算單元。能夠支持多線程并行的高吞吐量運(yùn)算。邏輯控制單元相對(duì)簡(jiǎn)單。GPU云平臺(tái)是基于GPU與CPU應(yīng)用的計(jì)算服務(wù)器。GPU在執(zhí)行復(fù)雜的數(shù)學(xué)和幾何計(jì)算方面有著獨(dú)特的優(yōu)勢(shì),特別是在...
...的訓(xùn)練更快嗎?我的核心觀點(diǎn)是,卷積和循環(huán)網(wǎng)絡(luò)很容易并行化,特別是當(dāng)你只使用一臺(tái)計(jì)算機(jī)或4個(gè)GPU時(shí)。然而,包括Google的Transformer在內(nèi)的全連接網(wǎng)絡(luò)并不能簡(jiǎn)單并行,并且需要專門的算法才能很好地運(yùn)行。圖1:主計(jì)算機(jī)中...
...據(jù)類型和使用的DL/ML框架不同,硬件不僅需要有強(qiáng)大的并行計(jì)算和浮點(diǎn)能力,更要具備強(qiáng)大的靈活性。但這兩種需求都不是傳統(tǒng)x86服務(wù)器所擅長(zhǎng)的,因此就需要與x86異構(gòu)的協(xié)處理器來(lái)完成對(duì)應(yīng)的模型訓(xùn)練任務(wù)。在這一領(lǐng)域,最...
...HPC)資源的內(nèi)存和計(jì)算能力的優(yōu)勢(shì),通過利用分布式數(shù)據(jù)并行并在訓(xùn)練期間增加有效批尺寸來(lái)解決訓(xùn)練耗時(shí)的問題 [1],[17]– [20]。這一研究往往聚焦于計(jì)算機(jī)視覺,很少涉及自然語(yǔ)言任務(wù),更不用說基于 RNN 的語(yǔ)言模型了。由于...
...的技術(shù)實(shí)踐》實(shí)錄。 北京一流科技有限公司將自動(dòng)編排并行模式、靜態(tài)調(diào)度、流式執(zhí)行等創(chuàng)新性技術(shù)相融合,構(gòu)建成一套自動(dòng)支持?jǐn)?shù)據(jù)并行、模型并行及流水并行等多種模式的分布式深度學(xué)習(xí)框架,降低了分布式訓(xùn)練門檻、極...
...除了在純算法上追求壓縮率,還會(huì)考慮到最終要多核運(yùn)行并行加速的時(shí)候不同核心之間的負(fù)載均衡,這種加速差其實(shí)屬于最優(yōu)的方式。在硬件方面,我剛才也提到韓松有一篇論文叫做 EIE 只能運(yùn)行卷積神經(jīng)網(wǎng)絡(luò)的 FC 層。我們考慮...
...作者也用兩個(gè)Telsa K80卡(總共4個(gè)GK210 GPU)來(lái)評(píng)估多GPU卡并行的性能。每種神經(jīng)網(wǎng)絡(luò)類型均選擇了一個(gè)小型網(wǎng)絡(luò)和大型網(wǎng)絡(luò)。該評(píng)測(cè)的主要發(fā)現(xiàn)可概括如下:總體上,多核CPU的性能并無(wú)很好的可擴(kuò)展性。在很多實(shí)驗(yàn)結(jié)果中,使用16...
ChatGPT和Sora等AI大模型應(yīng)用,將AI大模型和算力需求的熱度不斷帶上新的臺(tái)階。哪里可以獲得...
一、活動(dòng)亮點(diǎn):全球31個(gè)節(jié)點(diǎn)覆蓋 + 線路升級(jí),跨境業(yè)務(wù)福音!爆款云主機(jī)0.5折起:香港、海外多節(jié)點(diǎn)...
大模型的訓(xùn)練用4090是不合適的,但推理(inference/serving)用4090不能說合適,...