回答:個(gè)人的觀點(diǎn),這種大表的優(yōu)化,不一定上來(lái)就要分庫(kù)分表,因?yàn)楸硪坏┍徊鸱?,開(kāi)發(fā)、運(yùn)維的復(fù)雜度會(huì)直線上升,而大多數(shù)公司是欠缺這種能力的。所以MySQL中幾百萬(wàn)甚至小幾千萬(wàn)的表,先考慮做單表的優(yōu)化。單表優(yōu)化單表優(yōu)化可以從這幾個(gè)角度出發(fā):表分區(qū):MySQL在5.1之后才有的,可以看做是水平拆分,分區(qū)表需要在建表的需要加上分區(qū)參數(shù),用戶需要在建表的時(shí)候加上分區(qū)參數(shù);分區(qū)表底層由多個(gè)物理子表組成,但是對(duì)于代碼來(lái)...
回答:mysql在常規(guī)配置下,一般只能承受2000萬(wàn)的數(shù)據(jù)量(同時(shí)讀寫(xiě),且表中有大文本字段,單臺(tái)服務(wù)器)?,F(xiàn)在超過(guò)1億,并不斷增加的情況下,建議如下處理:1 分表??梢园磿r(shí)間,或按一定的規(guī)則拆分,做到查詢(xún)某一條數(shù)據(jù)庫(kù),盡量在一個(gè)子表中即可。這是最有效的方法2 讀寫(xiě)分離。尤其是寫(xiě)入,放在新表中,定期進(jìn)行同步。如果其中記錄不斷有update,最好將寫(xiě)的數(shù)據(jù)放在 redis中,定期同步3 表的大文本字段分離出...
回答:當(dāng)一張表的數(shù)據(jù)量達(dá)到千萬(wàn)級(jí)別的時(shí)候,任何對(duì)表的操作都得小心翼翼。核心點(diǎn)在于避免全表掃描、避免鎖表、避免產(chǎn)生大量行鎖。本質(zhì)上是讓每一次sql的執(zhí)行都更快的完成,避免過(guò)長(zhǎng)時(shí)間占用數(shù)據(jù)庫(kù)連接,讓連接能夠迅速的釋放回?cái)?shù)據(jù)庫(kù)連接池,提供更多穩(wěn)定的服務(wù)。一旦產(chǎn)生大量的行鎖甚至表鎖,將會(huì)帶來(lái)連接瞬間被打滿、數(shù)據(jù)庫(kù)資源耗盡、服務(wù)宕機(jī)的災(zāi)難性后果。所以如何避免以上問(wèn)題的發(fā)生才是最重要的,絕不能等問(wèn)題發(fā)生之后再去解決...
回答:我是做JAVA后臺(tái)開(kāi)發(fā)的,目前為止最多處理過(guò)每天600萬(wàn)左右的數(shù)據(jù)!數(shù)據(jù)不算特別多,但是也算是經(jīng)歷過(guò)焦頭爛額,下面淺談下自己和團(tuán)隊(duì)怎么做的?后臺(tái)架構(gòu):前置部門(mén):負(fù)責(zé)接收別的公司推過(guò)來(lái)的數(shù)據(jù),因?yàn)槊刻斓臄?shù)據(jù)量較大,且分布不均,使用十分鐘推送一次報(bào)文的方式,使用batch框架進(jìn)行數(shù)據(jù)落地,把落地成功的數(shù)據(jù)某個(gè)字段返回給調(diào)用端,讓調(diào)用端驗(yàn)證是否已經(jīng)全部落地成功的,保證數(shù)據(jù)的一致性!核心處理:使用了spr...
回答:目前階段大數(shù)據(jù)技術(shù)及體系已經(jīng)逐漸趨于成熟,不再是以概念貫穿的模式,大數(shù)據(jù)越來(lái)越多的被使用,伴隨互聯(lián)網(wǎng)化的發(fā)展更多的企業(yè)信息化已經(jīng)由IT時(shí)代轉(zhuǎn)變?yōu)镈T時(shí)代,以數(shù)據(jù)為核心,用數(shù)據(jù)進(jìn)行決策,基于數(shù)據(jù)驅(qū)動(dòng)企業(yè)的創(chuàng)新與發(fā)展,相信在將來(lái)大數(shù)據(jù)也會(huì)有更廣泛的應(yīng)用空間,對(duì)于大數(shù)據(jù)的理解主要分為以下幾個(gè)層面。1.數(shù)據(jù)來(lái)源:對(duì)于大數(shù)據(jù)時(shí)代而言更多強(qiáng)調(diào)基于業(yè)務(wù)數(shù)據(jù)的沉淀,在一定規(guī)模的數(shù)據(jù)上進(jìn)行進(jìn)一步的分析、處理、轉(zhuǎn)換,...
什么是大數(shù)據(jù)?進(jìn)入本世紀(jì)以來(lái),尤其是2010年之后,隨著互聯(lián)網(wǎng)特別是移動(dòng)互聯(lián)網(wǎng)的發(fā)展,數(shù)據(jù)的增長(zhǎng)呈爆炸趨勢(shì),已經(jīng)很難估計(jì)全世界的電子設(shè)備中存儲(chǔ)的數(shù)據(jù)到底有多少,描述數(shù)據(jù)系統(tǒng)的數(shù)據(jù)量的計(jì)量單位從MB(1MB大約...
摘要: 2018第九屆中國(guó)數(shù)據(jù)庫(kù)技術(shù)大會(huì),阿里云高級(jí)技術(shù)專(zhuān)家、架構(gòu)師封神(曹龍)帶來(lái)題為大數(shù)據(jù)時(shí)代數(shù)據(jù)庫(kù)-云HBase架構(gòu)&生態(tài)&實(shí)踐的演講。主要內(nèi)容有三個(gè)方面:首先介紹了業(yè)務(wù)挑戰(zhàn)帶來(lái)的架構(gòu)演進(jìn),其次分析了ApsaraDB HBas...
...備深入了解 OLAP,將目前一些需要實(shí)時(shí)返回的復(fù)雜查詢(xún)、數(shù)據(jù)分析下推至 TiDB。既減少計(jì)算服務(wù)的復(fù)雜性,又可增加數(shù)據(jù)的準(zhǔn)確性。 感謝 PingCAP 非常感謝 PingCAP 小伙伴們?cè)跀?shù)據(jù)庫(kù)上線過(guò)程中的大力支持,每次遇到困難都能及時(shí)、...
...備深入了解 OLAP,將目前一些需要實(shí)時(shí)返回的復(fù)雜查詢(xún)、數(shù)據(jù)分析下推至 TiDB。既減少計(jì)算服務(wù)的復(fù)雜性,又可增加數(shù)據(jù)的準(zhǔn)確性。 感謝 PingCAP 非常感謝 PingCAP 小伙伴們?cè)跀?shù)據(jù)庫(kù)上線過(guò)程中的大力支持,每次遇到困難都能及時(shí)、...
ChatGPT和Sora等AI大模型應(yīng)用,將AI大模型和算力需求的熱度不斷帶上新的臺(tái)階。哪里可以獲得...
一、活動(dòng)亮點(diǎn):全球31個(gè)節(jié)點(diǎn)覆蓋 + 線路升級(jí),跨境業(yè)務(wù)福音!爆款云主機(jī)0.5折起:香港、海外多節(jié)點(diǎn)...
大模型的訓(xùn)練用4090是不合適的,但推理(inference/serving)用4090不能說(shuō)合適,...