成人无码视频,亚洲精品久久久久av无码,午夜精品久久久久久毛片,亚洲 中文字幕 日韩 无码

資訊專欄INFORMATION COLUMN

Deep Learning(深度學習)學習筆記整理

Cheriselalala / 1978人閱讀

摘要:深度學習學習筆記整理系列作者聲明該的學習系列是整理自網(wǎng)上很大牛和機器學習專家所無私奉獻的資料的。但是自年以來,機器學習領域,取得了突破性的進展。

Deep Learning(深度學習)學習筆記整理系列

zouxy09@qq.com

http://blog.csdn.net/zouxy09

作者:Zouxy

version 1.0? 2013-04-08

聲明:

1)該Deep Learning的學習系列是整理自網(wǎng)上很大牛和機器學習專家所無私奉獻的資料的。具體引用的資料請看參考文獻。具體的版本聲明也參考原文獻。

2)本文僅供學術交流,非商用。所以每一部分具體的參考資料并沒有詳細對應。如果某部分不小心侵犯了大家的利益,還望海涵,并聯(lián)系博主刪除。

3)本人才疏學淺,整理總結的時候難免出錯,還望各位前輩不吝指正,謝謝。

4)閱讀本文需要機器學習、計算機視覺、神經(jīng)網(wǎng)絡等等基礎(如果沒有也沒關系了,沒有就看看,能不能看懂,呵呵)。

5)此屬于第一版本,若有錯誤,還需繼續(xù)修正與增刪。還望大家多多指點。大家都共享一點點,一起為祖國科研的推進添磚加瓦(呵呵,好高尚的目標?。U埪?lián)系:zouxy09@qq.com

目錄:

一、概述

二、背景

三、人腦視覺機理

四、關于特征

4.1、特征表示的粒度

4.2、初級(淺層)特征表示

4.3、結構性特征表示

4.4、需要有多少個特征?

五、Deep Learning的基本思想

六、淺層學習(Shallow Learning)和深度學習(Deep Learning)

七、Deep learning與Neural Network

八、Deep learning訓練過程

8.1、傳統(tǒng)神經(jīng)網(wǎng)絡的訓練方法

8.2、deep learning訓練過程

九、Deep Learning的常用模型或者方法

9.1、AutoEncoder自動編碼器

9.2、Sparse Coding稀疏編碼

9.3、Restricted Boltzmann Machine(RBM)限制波爾茲曼機

9.4、Deep BeliefNetworks深信度網(wǎng)絡

9.5、Convolutional Neural Networks卷積神經(jīng)網(wǎng)絡

十、總結與展望

十一、參考文獻和Deep Learning學習資源

一、概述

?????? Artificial Intelligence,也就是人工智能,就像長生不老和星際漫游一樣,是人類最美好的夢想之一。雖然計算機技術已經(jīng)取得了長足的進步,但是到目前為 止,還沒有一臺電腦能產生“自我”的意識。是的,在人類和大量現(xiàn)成數(shù)據(jù)的幫助下,電腦可以表現(xiàn)的十分強大,但是離開了這兩者,它甚至都不能分辨一個喵星人 和一個汪星人。

?????? 圖靈(圖靈,大家都知道吧。計算機和人工智能的鼻祖,分別對應于其著名的“圖靈機”和“圖靈測試”)在 1950 年的論文里,提出圖靈試驗的設想,即,隔墻對話,你將不知道與你談話的,是人還是電腦。這無疑給計算機,尤其是人工智能,預設了一個很高的期望值。但是半 個世紀過去了,人工智能的進展,遠遠沒有達到圖靈試驗的標準。這不僅讓多年翹首以待的人們,心灰意冷,認為人工智能是忽悠,相關領域是“偽科學”。

??????? 但是自 2006 年以來,機器學習領域,取得了突破性的進展。圖靈試驗,至少不是那么可望而不可及了。至于技術手段,不僅僅依賴于云計算對大數(shù)據(jù)的并行處理能力,而且依賴 于算法。這個算法就是,Deep Learning。借助于 Deep Learning 算法,人類終于找到了如何處理“抽象概念”這個亙古難題的方法。

/ 4 頁下一頁

文章版權歸作者所有,未經(jīng)允許請勿轉載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉載請注明本文地址:http://m.hztianpu.com/yun/4274.html

相關文章

  • DeepLearning.ai 深度學習筆記》發(fā)布,黃海廣博士整理

    摘要:在這堂課中,學生將可以學習到深度學習的基礎,學會構建神經(jīng)網(wǎng)絡,包括和等。課程中也會有很多實操項目,幫助學生更好地應用自己學到的深度學習技術,解決真實世界問題。 深度學習入門首推課程就是吳恩達的深度學習專項課程系列的 5 門課。該專項課程最大的特色就是內容全面、通俗易懂并配備了豐富的實戰(zhàn)項目。今天,給大家推薦一份關于該專項課程的核心筆記!這份筆記只能用兩個字形容:全面! showImg(...

    wenhai.he 評論0 收藏0
  • 重磅 | 完備的 AI 學習路線,最詳細的資源整理!

    摘要:是你學習從入門到專家必備的學習路線和優(yōu)質學習資源。的數(shù)學基礎最主要是高等數(shù)學線性代數(shù)概率論與數(shù)理統(tǒng)計三門課程,這三門課程是本科必修的。其作為機器學習的入門和進階資料非常適合。書籍介紹深度學習通常又被稱為花書,深度學習領域最經(jīng)典的暢銷書。 showImg(https://segmentfault.com/img/remote/1460000019011569); 【導讀】本文由知名開源平...

    荊兆峰 評論0 收藏0
  • 深度學習

    摘要:深度學習在過去的幾年里取得了許多驚人的成果,均與息息相關。機器學習進階筆記之一安裝與入門是基于進行研發(fā)的第二代人工智能學習系統(tǒng),被廣泛用于語音識別或圖像識別等多項機器深度學習領域。零基礎入門深度學習長短時記憶網(wǎng)絡。 多圖|入門必看:萬字長文帶你輕松了解LSTM全貌 作者 | Edwin Chen編譯 | AI100第一次接觸長短期記憶神經(jīng)網(wǎng)絡(LSTM)時,我驚呆了。原來,LSTM是神...

    Vultr 評論0 收藏0

發(fā)表評論

0條評論

最新活動
閱讀需要支付1元查看
<